

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

A novel colorimetric and fluorescence anion sensor with a urea group as binding site and a coumarin group as signal unit

Jie Shao*

Department of Chemistry and Materials Science, Nanjing Forestry University, Nanjing 210037, PR China

ARTICLE INFO

Article history: Received 10 November 2009 Received in revised form 15 April 2010 Accepted 16 April 2010 Available online 27 April 2010

Keywords: Anion sensor Urea Coumarin Azo Fluorescence Turn on

ABSTRACT

A novel colorimetric and fluorescent anion sensor based on urea substituted with a coumarin moiety and a pendant phenylazo unit was synthesized and evaluated according to the binding site-signalling subunit approach. The azo group was exploited as the chromogene, the urea moiety providing the anion binding site and the coumarin system was responsible for fluorescence. As such, the dye enabled visual detection of acetate ion in DMSO (color change light yellow to red) without resorting to spectroscopic instrumentation. More importantly, the sensor displayed significant fluorescence enhancement response to anions such as acetate, because of complex formation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, considerable attention has attended the development of colorimetric and fluorescent chemosensors for sensing anionic species [1-5]. Commonly, such sensors offer many advantages such as high sensitivity and simplicity, especially for real-time and on-line analysis of analytes [6,7]. Anions are widely found in the environmental and biological systems, as exemplified by fluoride, which is commonly used in dental care applications and exhibits inhibition of certain enzyme functions [8]; however, overexposure to fluoride can also result in the most widespread side effect of fluoride (fluorosis) [9] which induces nephrotoxic changes in both humans and animals and leads to urolithiasis [10]. Acetate ion has been found to be a possible tracer for malignancies and has been extensively investigated in prostate cancer and its metastases [11]. Accordingly, the determination of anionic species and their concentration is of interest in many areas, including food processing, environmental evaluation and clinic analysis [12-14], in which context, the development a novel colorimetric and fluorescent chemosensor for the rapid and convenient detection of biologically important anions such as fluoride and acetate [15–17] is required.

Hitherto, numerous colorimetric and/or fluorescent chemosensors for anions, cations or neutral molecules have been reported; however, almost all of these are designed to rely upon the same principles namely, that the functional moiety is covalently (binding site-signalling subunit approach) [18–21] or non-covalently (displacement approach) [22,23] linked to the signal moiety (eg chromogene, electrochemical group, fluorescent group). The functional moiety is responsible for binding guests and the signalling moiety acts as a signal transducer, that converts binding events into an optical signal expressed as a change in either color, electrochemistry or fluorescence [24]. Mechanisms that involve the photophysics of fluorogenic anion sensors, include photoinduced electron transfer (PET) [25], photoinduced charge transfer (PCT) [26] and excimer/ exciplex formation [27]. In general, a PET fluorescent sensor displays an 'ON-OFF' response towards anionic guests [28] and a fluorescent sensor based on PCT or excimer/exciplex formation shows a ratiometric response towards anions, which can quantify the analyte concentration by using the ratio of intensities [29,30]. However, despite many advantages, excimer/exciplex formation or PCT-based fluorogenic sensors for anions are not common in the literature.

This paper concerns a novel colorimetric and fluorescent anion sensor **1** that comprises a urea group (anion binding site) coupled to with a 6-(phenylazo)-coumarin group (chromogenic and fluorescence unit). The behaviour of this new compound towards anions eg acetate, was investigated by UV—vis and fluorescence spectroscopy in DMSO.

^{*} Tel.: +86 25 85427621; fax: +86 25 85427080. E-mail address: njshao@live.cn

2. Experimental section

2.1. Apparatus

 ^1H NMR spectra were obtained on a Varian UNITY Plus-400 MHz Spectrometer. ESI-MS was performed with a MARINER apparatus. C, H, N elemental analyses were made on an elementar vario EL. UV—vis spectra and fluorescence spectra were recorded on a Shimadzu UV2450 Spectrophotometer and a Shimadzu RF-5301PC fluorimeter, respectively, at 298.2 \pm 0.1 K.

2.2. Materials

All reagents for synthesis obtained commercially were used without further purification. In the titration experiments, all the anions were added in the form of tetra-n-butylammonium (TBA) salts, which were purchased from Chemical Company Ltd., stored in a vacuum desiccator containing self-indicating silica and dried fully before use. DMSO was dried with CaH₂ and then distilled under reduced pressure.

2.3. General method

All titration experiments were carried out at 298.2 K, unless otherwise mentioned. UV—vis spectra and fluorescent spectra were measured using a Shimadzu UV2450 Spectrophotometer and a Shimadzu RF-5301PC fluorimeter, respectively. A 5.0×10^{-5} M solution of the compound 1 in dried DMSO and solutions of 0.10 M tetrabutylammonium (TBA) salts of the respective anions were prepared in dried DMSO and were stored under a dry atmosphere. These solutions were used for all spectroscopic studies after appropriate dilution. Then, a given amount of the solution of 1 was added to the quartz cuvette and the increased amount of anions tested (0.1 M in DMSO-d6) was added to the solution. The absorbance/emission spectra were then recorded immediately. The slit width used for fluorescence measurements was 5 mm.

2.4. Synthesis

2.4.1. 5-Phenylazo-salicylaldehyde (2)

The route to **1** is shown in Figs. 1 and **2** was prepared according to the reported method [21,31]. To a solution of aniline (5 ml; 0.05 mol) in a small quantity of water was slowly added 6 ml of 37% aq HCl solution at 0–5 °C with stirring. 20 ml of 20% aq NaNO₂ solution was added to the mixture and the resulting solution was stirred for 1 h, affording a bright yellow solution. salicylaldehyde

Fig. 1. Synthesis of *N*-(6-phenylazo-coumarin-3- formyl)-*N*′-4-nitrophenylurea (1).

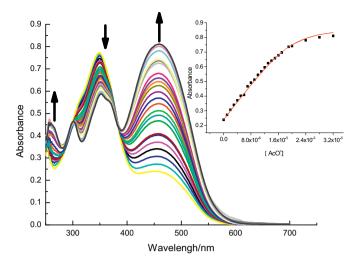
(5 ml; 0.05 ml) was dissolved in a solution comprising 18 g NaCO_3 and 150 ml H_2O and the resulting solution of salicylaldehyde was added dropwise to the bright yellow coloured solution over 1 h. After stirring for 4 h, the reaction mixture was neutralized with HCl, the brown crude solid was filtered and recrystallized from ethanol to afford a pure yellow product. Mp: $120 \, ^{\circ}\text{C}$ (Fig. 2).

2.4.2. 6-Phenylazo-coumarin-3-formylethylester (3)

3 was synthesized according to the literature [32]. In a 250 ml round-bottomed flask was added **3** (4.52 g, 20.0 mmol), **5** (3.2 g, 20.0 mmol), a catalytic amount of piperdine and ethanol (140 mL). The resulting mixture was heated to reflux under magnetic stirring for 6 h after which the solution was cooled to room temperature over 10 h and the brown precipitate which appeared was collected by filtration, washed with ethanol and recrystallized from ethanol to give the pure brown coloured product (3.24 g). Yield = 50%.

2.4.3. 6-Phenylazo-coumarin-3- formylhydrazine (4)

4 (0.644 g, 2 mmol) was dissolved in ethanol (40 ml), to which was added hydrazine in ethanol (5 ml) dropwise and the ensuing mixture was stirred at reflux for 4 h. The reaction solution was cooled to room temperature and the brown precipitate was filtered, washed with ethanol and used in the next step without further purification.


2.4.4. N-(6-Phenylazo-coumarin-3-formyl)-N'-4-(nitrophenyl)urea (1)

1 was prepared according to the literature procedure [14,33]. **2** (0.31 g, 1.0 mmol) was dissolved in hot CH₃CN (25 mL) to which was then added, dropwise, 4-nitrophenylisocyanate (0.16 g, 1.0 mmol) and the ensuing mixture was stirred under an inert atmosphere at reflux for 5 h. The reaction mixture was cooled to room temperature and the brown precipitate formed was filtered and washed with CH₃CN, yield = 0.36 g, 76%. ¹H NMR (400 MHz; DMSO- d_6 ; Me₄Si): δ_H 11.07 (s, -NH, 1H), 10.98 (s, -NH, 1H), 9.71 (s, -NH, 1H), 8.65 (s, Ar-H, 1H), 8.41 (s, Ar-H, 1H), 8.24 (d, J = 9.2 Hz, Ar-H, 2H), 8.01 (d, J = 9.2 Hz, Ar-H, 2H), 7.88 (d, J = 7.6 Hz, Ar-H, 2H), 7.83 (m, Ar-H, 1H), 7.62 (m, Ar-H, 2H), 7.56 (d, J = 7.2 Hz, Ar-H, 1H), 7.10 (d, J = 8 Hz, Ar-H, 1H); ESI-mass: m/z calcd. for C₂₃H₁₆N₆O₆ [M] 472.41, found: 473.13; Elemental analysis calcd for C₂₃H₁₆N₆O₆: C 58.48%, H 3.41%, N 17.79%, found: C 58.21%, H 3.32%, N 18.01%.

3. Results and discussion

Coumarin derivatives have been extensively investigated for electronic and photonic applications, such as fluorescence probes, charge-transfer agents, solar energy collectors, and nonlinear optical properties due to their inherent photochemical characteristics, reasonable stability, good solubility and their relative ease of synthesis [4,34–36]. A great number of fluorescent probes based on coumarin derivatives for various transition-metal ions have been developed in recent years [37,38], however, fluorescent anion sensors derived from coumarins have been scarcely reported [39]. In addition, the urea group has been proven to be an excellent hydrogen bonding donor exploited in design and synthesis of anion sensors [40–42]. Bearing these in mind, we

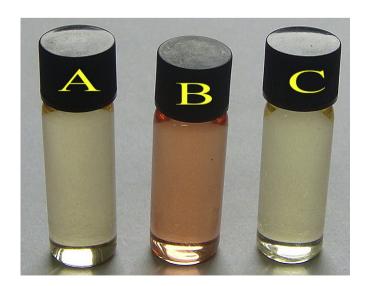

Fig. 2. Structure of the sensor 1.

Fig. 3. Variation in the absorption spectra of 1 (2×10^{-5} M) in DMSO with increasing concentrations of AcO $^-$. Inset: The titration curves for AcO $^-$ show the 1:1 stoichiometry.

introduced an azo moiety (a chromophore unit) to the coumarin derivative (a fluorescence unit) and thus the intermediate (3-substituted-6-(phenylazo)-coumarin) was obtained. Then, the colorimetric and fluorescent anion sensor 1 was successfully prepared through coupling the urea group with the intermediate.

Firstly, the anion binding and sensing ability of 1 was investigated in detail in DMSO. Fig. 3 demonstrates the changes in the absorption spectrum of 1 (2 \times 10 $^{-5}$ M) in DMSO in the absence and the presence of AcO $^-$. The free compound 1 exhibited one main band at 348 nm with a shoulder band at 458 nm, which could be attributed to $\pi-\pi^*$ transition of the azo moiety. As soon as the acetate ion was added at room temperature, the absorption maximum of 1 at 348 nm decreased gradually whereas the absorption at 259 nm and a new absorption maximum at 458 nm increased. The color changes of sensor 1 were also observed by eye simultaneously from light yellow to red in presence of AcO $^-$ (see Fig. 4). Additionally there were two well-defined isosbestic points at 301 nm and 385 nm, respectively, indicating that a stable

Fig. 4. Color changes of the sensor 1 (2×10^{-5} M) in absence and presence of different anions (A: the free 1; B: 1+5 equiv AcO⁻, F⁻ or H₂PO₄; C: 1+ excessive equiv Cl⁻, Br⁻ or I⁻).

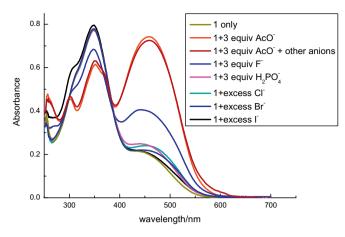


Fig. 5. Variation in the absorption spectra of 1 (2 \times 10⁻⁵ M) induced by different anions in DMSO.

complex having a certain stoichiometric ratio between 1 and AcO⁻ formed in solution. The titration profile of 1 with AcO⁻ shown in inset of Fig. 3 demonstrated 1 equiv of AcO⁻ reacting with 1 equiv of 1 could quickly reached an equilibrium, indicating the formation of a 1/AcO⁻ complex of 1:1 stoichiometry.

The sensor 1 gave a similar spectral response towards F⁻ ion. The presence of the other anions (Cl⁻, Br⁻ and I⁻) with weak basicity resulted in negligible changes in UV-vis spectra of 1, which could be seen from Fig. 5. Surprisingly spectral changes were induced by addition of H₂PO₄ ions, which possibly resulted from an uncertain stoichiometric ratio between 1 and H₂PO₄ (see Fig. 6). Fig. 4 displayed color changes of 1 (2 \times 10⁻⁵ M, DMSO) in presence of the different anions tested. Obviously, addition of AcO⁻, F⁻ and H₂PO₄ ions induced similar color changes from light yellow to red and no significant color changes were seen when Cl-, Br- and Iions were added, which was consistent with results observed from spectral titrations. In particular, the selectivity for acetate anion over a complex background of potentially competing species was of interest and was thus evaluated (see Fig. 5). Obviously, the spectral changes of 1 resulting from AcO- were influenced slightly by the subsequent addition of miscellaneous anions.

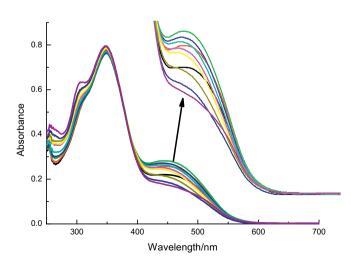


Fig. 6. Variation in the absorption spectra of 1 (2 \times 10⁻⁵ M) in DMSO with increasing concentrations of $H_2PO_4^-$.

Table 1 Equilibrium constants (K_s mol $^{-1}$ L) of the sensor 1 with anions in DMSO at 298.2 \pm 0.1 K,

Anions ^a	AcO ⁻	F ⁻	H ₂ PO ₄	Cl ⁻	Br ⁻	I-
$K_{\rm s}({\rm M}^{-1})$	9.87 × 10 ⁵	8.29 × 10 ³	_b	_ c	-	-
R^2	0.996	0.994	_	_	_	_

- ^a All the anions were added in the form of tetrabutylammonium salts.
- ^b The titration profile was not suitable for determination of the equilibrium constant.
- ^c The equilibrium constants could not be determined due to slight spectral changes.

The equilibrium constants (K_s) of 1 with different anions were determined by nonlinear fitting analyses of the titration curves according to the Eq. (1), 1:1 host–guest complexation [43].

$$A = A_{0}$$

$$+ \frac{(A_{\text{lim}} - A) \left\{ c_{\text{H}} + c_{\text{G}} + 1/K_{\text{S}} - \left[(c_{\text{H}} + c_{\text{G}} + 1/K_{\text{S}})^{2} - 4c_{\text{H}}c_{\text{G}} \right]^{1/2} \right\}}{2c_{\text{H}}}$$
(1)

Where, c_G and c_H are the concentration of guest and host, respectively and A is the intensity of absorbance at a certain concentration of host and guest. A_0 is the intensity of absorbance of host only and A_{lim} is the maximum intensity of absorbance of host when guest is added. K_S is the equilibrium constant. The equilibrium constant (K_S) could be determined from the plot of A against [Anion] and the high value (R^2) of the plots (Table 1) confirmed a 1:1 complex formation between 1 and anions. This further corroborates 1:1 complex formation that we have concluded based on the spectral titration profile.

The selectivity of the host for a specific anion of interest could be rationalized on the basis of not only the guest basicity but also complementary shape between the host and the anionic guests [44]. In particular, multiple hydrogen-bonding interactions were necessary in high-affinity anion binding sites. Consequently, it was reasonable that the sensor 1 showed a high selectivity for acetate ion among the other anions tested such as F^- and $H_2PO_4^-$ (see Fig. 7). The proposed binding mode of the host 1 with AcO^- ion in solution was described in Fig. 7, which corresponds with observations from previous studies [45].

The fluorescence properties of 1 upon binding with anions were studied in DMSO. The sensor 1 gave a weak emission at 389 nm with a tail at 447 nm (Fig. 8). When AcO⁻ ion was added, a hypsochromic shift (~10 nm) was observed for the 389 nm band and synchronously there were significant increases in fluorescence intensity. Moreover, the tail emission band at 447 nm was fully quenched. The proposed mechanism for the enhancement was based upon binding-induced conformational restriction of a fluorophore [46]. In solution, the N–N bond of 1 could freely vibrate and rotate, which enabled vibrational and rotational relaxation modes of the non-radiative decay. As a consequence of the anion coordination, the rigidity of the formed complex increased rendering the non-radiative decay from the excited

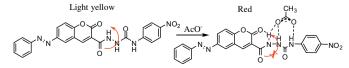


Fig. 7. The proposed host—guest interaction mode in the solution.

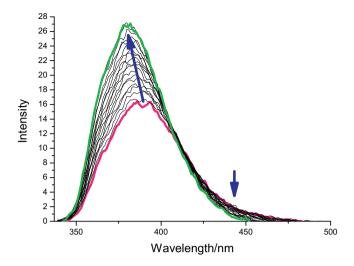


Fig. 8. Variation in the emission spectra of 1 (2 \times 10⁻⁵ M) in DMSO with increasing concentrations of AcO⁻ ($\lambda_{exc}=382$ nm).

state less probable; consequently, the emission intensity increased (see Fig. 8).

4. Conclusion

In summary, a colorimetric and turn-on fluorescence anion sensor was designed and synthesized according to the binding site-signalling subunit approach. The urea group was exploited as an anion binding site in 1 and 6-(phenylazo)-coumarin moiety acted as both a fluorescence unit and a chromophore unit. In addition, the fluorescence enhancement in the emission spectra of 1 were observed due to anion-induced conformational restriction.

Acknowledgment

The author thank Prof. Z. Y. Luo for his help in preparation of the paper and also thank anonymous reviewers for their valuable suggestions on improvement of the present paper.

References

- Sessler JL, Karnas E, Kim SK, Ou Z, Zhang M, Kadish KM, et al. "Umpolung" photoinduced charge separation in an anion-bound supramolecular complex. Journal of the American Chemical Society 2008:130:15256-7.
- [2] Liu W, Pink M, Lee D. Conjugated polymer sensors built on π-extended borasiloxane cages, Journal of the American Chemical Society 2009:131:8703-7.
- [3] Shao J, Yu D, Lin H, Lin H. Colorimetric recognizing of biologically important anions based on anion-induced tautomerism of the sensor. Journal Molecular Recognition 2008;21:425–30.
- [4] Lee H, Kim H, Kim G, Shin I, Hong J. Fluorescent chemodosimeter for selective detection of cyanide in water. Organic Letters 2008;10:49–51.
 [5] Lee H, Lee JT, Hong J, Kim H. Visual detection of cyanide through intra-
- [5] Lee H, Lee JT, Hong J, Kim H. Visual detection of cyanide through intramolecular hydrogen bond. Chemistry Letters 2007;36:816–7.
- [6] Yeo HM, Ju Ryu BJ, Nam KC. A novel fluoride ion colorimetric chemosensor. Organic Letters 2008;10:2931–4.
- [7] Galbraith E, Fyles TM, Marken F, Davidson MG, James TD. Fluorescent boron bis(phenolate) with association response to chloride and dissociation response to fluoride. Inorganic Chemistry 2008;47:6236–44.
- [8] Michigami Y, Kuroda Y, Ueda K, Yamamoto Y. Determination of urinary fluoride by ion chromatography. Analytica Chimica Acta 1993;274:299–302.
- [9] Kirk LK. Biochemistry of the halogens and inorganic halides. New York: Plenum Press; 1991.
- [10] Ayoob S, Gupta AK. Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology 2006;36:433–87.
- [11] Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proceeding of the National Academy Sciences of the United States of America 2000;97:3450–4.

- [12] Lin YC, Chen CT. Acridinium salt-based fluoride and acetate chromofluorescent probes: molecular insights into anion selectivity switching. Organic Letters 2009;11:4858–61.
- [13] Palacios MA, Nishiyabu R, Marquez M, Anzenbacher Jr P. Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water. Journal of the American Chemical Society 2007;129:7538–44.
- [14] Shao J, Lin H, Lin H. A simple and efficient colorimetric anion sensor based on a thiourea group in DMSO and DMSO—water and its real-life application. Talanta 2008;75:1015—20.
- [15] Shao J, Yu X, Xu X, Lin H, Cai Z, Lin H. Colorimetric and fluorescent sensing of biologically important fluoride in physiological pH condition based on a positive homotropic allosteric system. Talanta 2009;79:547–51.
- [16] Shao J, Lin H, Yu M, Cai Z, Lin H. Study on acetate ion recognition and sensing in aqueous media using a novel and simple colorimetric sensor and its analytical application. Talanta 2008;75:551–5.
- [17] Shiraishi Y, Maehara H, Hirai T. Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic Biomolecular Chemistry 2009:7:2072—6.
- [18] Martínez-Máñez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews 2003:103:4419–76.
- [19] Jung HS, Park M, Han DY, Kim E, Lee C, Ham S, et al. Cu²⁺ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Organic Letters 2009:11:3378–81.
- [20] Zhang R, Tang D, Lu P, Yang X, Liao D, Zhang Y, et al. Nucleic acid-induced aggregation and pyrene excimer formation. Organic Letters 2009;11:4302–5.
- [21] Shao J, Lin H, Lin H. A novel chromo- and fluorogenic dual responding H₂PO₄ receptor based on an azo derivative. Dyes and Pigments 2009;80:259–63.
- [22] Jang HH, Yi S, Kim MH, Kim S, Lee NH, Han MS. A simple method for improving the optical properties of a dimetallic coordination fluorescent chemosensor for adenosine triphosphate. Tetrahedron Letters 2009;50:6241–3.
- [23] Han MS, Kim DH. Naked-eye detection of phosphate ions in water at physiological pH: a remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angewandte Chemie International Edition 2002; 41:3809–11.
- [24] Romero T, Caballero A, Tárraga A, Molina P. A click-generated triazole tethered ferrocene—pyrene dyad for dual-mode recognition of the pyrophosphate anion. Organic Letters 2009:11:3466—9.
- [25] Shao J, Lin H, Cai Z, Lin H. A simple colorimetric and ON—OFF fluorescent chemosensor for biologically important anions based on amide moieties. Journal of Photochemistry and Photobiology B: Biology 2009;95:1–5.
- [26] Shao J, Lin H, Lin H. Rational design of a colorimetric and ratiometric fluorescent chemosensor based on intramolecular charge transfer (ICT). Talanta 2008:77:273–7.
- [27] Wu J, Zhou J, Wang P, Zhang X, Wu S. New fluorescent chemosensor based on exciplex signaling mechanism. Organic Letters 2005;7:2133–6.
- [28] Paduka Ali HD, Kruger PE, Gunnlaugsson T. Colorimetric 'naked-eye' and fluorescent sensors for anions based on amidourea functionalised 1,8-naphthalimide structures: anion recognition via either deprotonation or hydrogen bonding in DMSO. New Journal of Chemistry 2008;32:1153–61.

- [29] Valeur B. Molecular fluorescence: principles and applications. New York: Wiley-VCH Verlag GmbH; 2001. p. 206.
- [30] Suresh M, Mishra S, Mishra SK, Suresh E, Mandal AK, Shrivastav A, et al. Resonance energy transfer approach and a new ratiometric probe for Hg²⁺ in aqueous media and living organism. Organic Letters 2009;11:2740–3.
- [31] Wu BW, Zhang B, Yu XQ, Liu JN. 4-Phenylazo-salicylaldehyde hydrazone reagents and their spectral study. Spectroscopy and Spectral Analysis 2006;26:106–8.
- [32] Sun YF, Song HC, Sui XZ, Xu ZL. Synthesis and structural characterization of new 3-substituted-6-arylazocoumarins. Chinese Journal of Organic Chemistry 2003;23:162–6.
- [33] Shao J, Lin H, Shang X, Chen H, Lin H. A novel neutral receptor for selective recognition of H₂PO₄. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2007;59:371–5.
- [34] Li X, Zhao Y, Wang T, Shi M, Wu F. Coumarin derivatives with enhanced two-photon absorption cross-sections. Dyes and Pigments 2007;74:108–12.
- [35] Wang ZS, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, et al. Photophysical and (photo)electrochemical properties of a coumarin dye. The Journal of Physical Chemistry B 2005;109:3907–14.
- [36] Wang T, Zhao Y, Shi M, Wu P. The synthesis of novel coumarin dyes and the study of their photoreaction properties. Dyes and Pigments 2007;75:104–10.
- [37] Mizukami S, Okada S, Kimura S, Kikuchi K. Design and synthesis of coumarinbased Zn²⁺ probes for ratiometric fluorescence imaging. Inorganic Chemistry 2009;48:7630–8.
- [38] Ray D, Bharadwaj PK. A coumarin-derived fluorescence probe selective for magnesium. Inorganic Chemistry 2008;47:2252–4.
- [39] Ghosh K, Adhikari S. Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors. Tetrahedron Letters 2006;47:8165–9.
- [40] Pérez-Casas C, Yatsimirsky AK. Detailing hydrogen bonding and deprotonation equilibria between anions and urea/thiourea derivatives. The Journal of Organic Chemistry 2008;73:2275–84.
- [41] dos Santos CMG, McCabe T, Watson GW, Kruger PE, Gunnlaugsson T. The recognition and sensing of anions through "positive allosteric effects" using simple urea—amide receptors. The Journal of Organic Chemistry 2008; 73:9235—44
- [42] Boiocchi M, Boca LD, Gómez DE, Fabbrizzi L, Licchelli M, Monzani E. Nature of urea—fluoride interaction: incipient and definitive proton transfer. Journal of the American Chemical Society 2004;126:16507—14.
- [43] Bourson J, Pouget J, Valeur B. Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. The Journal of Physical Chemistry 1993:97:4552-7.
- [44] Korendovych IV, Cho M, Butler PL, Staples RJ, Rybak-Akimova EV. Anion binding to monotopic and ditopic macrocyclic amides. Organic Letters 2006;8:3171–4.
- [45] Shao J, Lin H, Lin H. A simple and efficient colorimetric anion receptor for $H_2PO_{\bar{4}}$. Spectrochimica Acta Part A 2008;70:682–5.
- [46] Mello JV, Finney NS. Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer. Angewandte Chemie International Edition 2001;40:1536–8.